| 1. Problem Statements | Networking among related organizations on Disaster Risk Reduction is not good
Lack of awareness with disaster Risk Reduction
Regulations and standards are stated in foreign language thus not well accepted by ordinally people.
However emphasis on “local languages” may lead mistaken idea, more suitable expression is needed.
Use the language that policy makers can easily understand to let them fully aware of disaster risks.
To provide integrated and systematic solution for multi-hazard mitigation is needed.
Overtrust on science and technology, we need to know ST is not perfect.
Lack of institutionalization of RIA
Even when RIA is institutionalized there is the risk of political considerations overturning technical inputs
Governance of Data is not enough |
|---|---|
| 2. Future Direction | The societies need to be more effective communication methods to put all the recourses in the disaster risk reduction support
Need to conduct more training programs for sharing information
Promote transdisciplinary approach in DRR policy
Make use of the advanced technologies, such as big data and high performance computing, to provide systematic and integrated multi-hazard mitigation solutions as well as high-fidelity visualize the disaster risk.
Regular structured and planned engagement by scientists with the policy and practitioner communities
Non-political mechanisms for use of risk information in planning
Foster mutual understanding, respects and trusts among “scientists”, “Engineers (such as Civil Engineers)” and “policy makers such as implementation Ministry and local government”
Governance structure should include policy coordination between the national and local level. Capacity at the local level should be
Overcoming new risk without regret, (i.e. finding out new risk and way of non-regret adaption on it), which could arise by climate |
| 3. Imperative Actions | Established communication mechanism (through the regulations)
Starting to teach the risk reductions in the teaching programs
Propose practical countermeasures to realize different acceptable protection level of disaster for different countries/regions.
Bridge the gaps between academic sectors and policy makers
Initiation of dialogue – scientists should take the lead
Establish independence of development review process
Incrase opportunity to frankly shear new finding, new way of adaptation and new problem as adaptation among “scientists”, “Engineers (such as Civil Engineers)” and “policy makers such as implementation Ministry and local government”
Conducting many projects in disaster risk reductions.
Build a database providing practical countermeasures.
Establish a national network for disaster reduction, inviting from different society.
Translate research/scientific outputs into knowledge products which can be easily applied in planning
Regular dialogue between ST community and practitioners include discussions on needs of policy, practitioner communities
Accelerating and deepening adaptation implementation. |
| 4. Key Contributions to NP | Solutions for disaster reduction should be systematic and integrated.
Transdisciplinary collaboration is required. |
| 5. Others (Synthesis) | |